Hyper Normalisation and Conditioning for Discrete Probability Distributions

نویسنده

  • Bart Jacobs
چکیده

Normalisation in probability theory turns a subdistribution into a proper distribution. It is a partial operation, since it is undefined for the zero subdistribution. This partiality makes it hard to reason equationally about normalisation. A novel description of normalisation is given as a mathematically well-behaved total function. The output of this ‘hyper’ normalisation operation is a distribution of distributions. It improves reasoning about normalisation. After developing the basics of this theory of (hyper) normalisation, it is put to use in a similarly new description of conditioning, producing a distribution of conditional distributions. This is used to give a clean abstract reformulation of refinement in quantitative information flow.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A continuous approximation fitting to the discrete distributions using ODE

The probability density functions fitting to the discrete probability functions has always been needed, and very important. This paper is fitting the continuous curves which are probability density functions to the binomial probability functions, negative binomial geometrics, poisson and hypergeometric. The main key in these fittings is the use of the derivative concept and common differential ...

متن کامل

Classification and properties of acyclic discrete phase-type distributions based on geometric and shifted geometric distributions

Acyclic phase-type distributions form a versatile model, serving as approximations to many probability distributions in various circumstances. They exhibit special properties and characteristics that usually make their applications attractive. Compared to acyclic continuous phase-type (ACPH) distributions, acyclic discrete phase-type (ADPH) distributions and their subclasses (ADPH family) have ...

متن کامل

Exact maximum coverage probabilities of confidence intervals with increasing bounds for Poisson distribution mean

 ‎A Poisson distribution is well used as a standard model for analyzing count data‎. ‎So the Poisson distribution parameter estimation is widely applied in practice‎. ‎Providing accurate confidence intervals for the discrete distribution parameters is very difficult‎. ‎So far‎, ‎many asymptotic confidence intervals for the mean of Poisson distribution is provided‎. ‎It is known that the coverag...

متن کامل

On discrete a-unimodal and a-monotone distributions

Unimodality is one of the building structures of distributions that like skewness, kurtosis and symmetry is visible in the shape of a function. Comparing two different distributions, can be a very difficult task. But if both the distributions are of the same types, for example both are unimodal, for comparison we may just compare the modes, dispersions and skewness. So, the concept of unimodali...

متن کامل

All You Need is the Monad. . . What Monad Was That Again?

Probability enjoys a monadic structure (Lawvere 1962; Giry 1981; Ramsey and Pfeffer 2002). A monadic computation represents a probability distribution, and the unit operation return a creates the (Dirac) distribution “certainly a.” The bind operation combines a distribution of type M a and a function of type a -> M b; the function is a probability kernel (Pollard 2002), and it represents the co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Logical Methods in Computer Science

دوره 13  شماره 

صفحات  -

تاریخ انتشار 2017